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Abstract: Relighting real scenes/objects is useful for applications such as augmented reality and mixed reality. In gen-
eral, relighting of glossy objects requires a large number of images, because specular reflection components
are sensitive to light source positions/directions, and then the linear interpolation with sparse light sources
does not work well. In this paper, we make use of not only point light sources but also extended light sources
for efficiently capturing specular reflection components and achieve relighting from a small number of images.
Specifically, we propose a CNN-based method that simultaneously learns the illumination module (illumina-
tion condition), i.e. the linear combinations of the point light sources and the extended light sources under
which a small number of input images are taken and the reconstruction module which recovers the images
under arbitrary point light sources from the captured images in an end-to-end manner. We conduct a number
of experiments using real images captured with a display-camera system, and confirm the effectiveness of our
proposed method.

1 Introduction

Synthesizing photo-realistic images of a scene/an ob-
ject under arbitrary illumination environment is one
of the most important issues in the interdisciplinary
field between computer vision and computer graphics.
An approach to synthesizing such images from the
real images of the scene/object taken under various
lighting conditions is called image-based rendering
or (image-based) relighting in particular. Relighting
real scenes/objects is useful for applications such as
augmented reality and mixed reality (Debevec, 1998;
Sato et al., 1999; Debevec et al., 2000). In this study,
we focus on relighting from the images captured with
a display (Schechner et al., 2003; Peers et al., 2009),
but our proposed method could be extended to relight-
ing with a light stage (Debevec et al., 2000; Wenger
et al., 2003; Hawkins et al., 2004; Wenger et al., 2005;
Einarsson et al., 2006; Fuchs et al., 2007; Ghosh et al.,
2011).

According to the superposition principle, an im-
age of an object taken under two light sources is a
linear combination (convex combination in a strict
sense) of the two images, each of which is captured
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under one of the light sources. Therefore, we can
synthesize the image of an object under arbitrary illu-
mination environment by combining the real images
of the object taken in advance under various lighting
conditions, e.g. various light source positions on a
display.

In general, the reflected light on an object sur-
face consists of a diffuse reflection component and
a specular reflection component. It is known that
the image of a Lambertian object under a novel light
source direction is represented by the linear combi-
nation of the three images of the object taken under
non-coplanar light source directions (Shashua, 1997).
In other words, the diffuse reflection component ob-
served at a surface point under a novel light source is
given by interpolating those under three known light
sources. Therefore, we can achieve relighting of Lam-
bertian objects from a small number of images taken
under sparse light sources, e.g. sparse positions on a
display.

On the other hand, relighting of glossy objects is
still an open problem to be addressed. This is because
specular reflection components are sharp and sensi-
tive to light source positions/directions, and then the
linear interpolation with sparse light sources does not
work well. Therefore, it requires a large number of



images taken under dense light sources; the smoother
a surface is, the larger the number of required images
is. Unfortunately, the use of denser light source posi-
tions makes the required capture time longer.

Accordingly, in this paper, we make use of
not only point light sources but also extended light
sources1 for efficiently capturing specular reflection
components and achieve relighting from a small num-
ber of images. Specifically, we propose a network that
simultaneously learns the illumination module (illu-
mination condition), i.e. the linear combinations of
the point light sources and the extended light sources
with various sizes under which a small number of in-
put images are taken and the reconstruction module
which recovers the images under arbitrary point light
sources from the captured images. In other words, we
optimize both the illumination module and the recon-
struction module in an end-to-end manner, and then
achieve relighting from a small number of images.

Especially, we focus on the fact that the illumi-
nation condition can be represented by (1× 1) con-
volution kernels, and then simultaneously optimize
the illumination module and the reconstruction mod-
ule in the framework of convolutional neural network
(CNN). We conduct a number of experiments us-
ing real images captured with a display-camera sys-
tem, and confirm the effectiveness of our proposed
method.

The main contributions of this paper are threefold.
First, we propose a novel approach that exploits ex-
tended light sources for relighting from a small num-
ber of images. Second, we propose a data-driven
method using the framework of CNN that simultane-
ously learns the illumination module and the recon-
struction module in an end-to-end manner. Third, we
experimentally confirm the effectiveness of our pro-
posed method, in particular the use of extended light
sources and the end-to-end optimization.

2 Related Work

2.1 Physics-Based Relighting

Image-based rendering under arbitrary illumina-
tion environment is called (image-based) relighting.
Based on the superposition principle, Debevec et
al. (Debevec et al., 2000) propose relighting from the
2,048 real images captured by using a light stage, and

1Note that extended light sources are used in the exist-
ing methods (Nayar et al., 1990; Sato et al., 2005), but their
purposes are different from ours; the former conducts shape
recovery of glossy objects and the latter conducts relighting
under low-frequency illumination environment.

then extend their method in speed (Hawkins et al.,
2004; Wenger et al., 2005), spectra (Wenger et al.,
2003), scale (Einarsson et al., 2006), and model ac-
quisition (Ghosh et al., 2011). Their methods work
well for human faces, but denser light sources are
required for relighting smoother surfaces in general.
Fuchs et al. (Fuchs et al., 2007) propose a method for
reconstructing the images of an object under dense
light sources from those under sparse light sources.
Their method interpolates the high-frequency compo-
nents such as specular reflection components under
sparse light source directions via optical flow. Since it
implicitly assumes surfaces with smooth BRDFs and
normals, the applicability of their method is limited.

The number of required images for relighting can
be reduced by combining image-based rendering with
specific physics-based model. For diffuse reflection
components, Shashua (Shashua, 1997) shows that the
image of a Lambertian object under a novel light
source direction is represented by the linear combi-
nation of the three images of the object taken un-
der non-coplanar light source directions. For specu-
lar reflection components, Lin and Lee (Lin and Lee,
1999) shows that the specular reflection components
can be linearly interpolated in the log domain. How-
ever, their method implicitly assumes that the spec-
ular highlights observed under different light source
directions overlap each other, i.e. it is applicable to
rough surfaces or dense light source directions.

2.2 Learning-Based Relighting

Recently, learning-based methods are proposed for re-
lighting. For human faces, we can exploit the datasets
of the face images captured with light stages. Sun
et al. (Sun et al., 2019) and Zhou et al. (Zhou et al.,
2019) propose methods for face relighting from a sin-
gle portrait image. Meka et al. (Meka et al., 2019)
propose a network that predicts the full 4D reflectance
fields of a face from two images captured under spher-
ical gradient illumination, and achieve relighting of
non-static faces. Those existing methods work well
for face images, but it is not clear whether they are ap-
plicable to general classes of objects other than faces.

For general objects, Ren et al. (Ren et al., 2015)
propose a deep network that models light transport
as a non-linear function of light source position and
pixel coordinates, and achieve relighting from a rela-
tively small number of images. Xu et al. (Xu et al.,
2018) achieve image-based relighting from only five
directional light sources by jointly learning both the
optimal input light directions and the relighting func-
tion. Xu et al. (Xu et al., 2019) extend their method
to image-based rendering under arbitrary lighting and



Figure 1: Our proposed network with the illumination module and the reconstruction module. The input of the illumination
module is point and extended light sources and the images taken under those light sources, and its output is the optimal
illumination condition and the images under the optimal illumination condition. The input to the reconstruction module is
the output from the illumination module and a novel point light source, and its output is the predicted image under the novel
point light source. (a) In the training phase, the illumination module and the reconstruction module are trained on the basis of
the loss function L in an end-to-end manner. (b) In the test phase, we actually capture the images under the trained optimal
illumination condition, and then recover the images under novel point light sources by using the trained reconstruction module.

viewing directions. Their method achieve relighting
from a small number of images, but there is still room
for improvement by using extended light sources. The
objective of our study is to investigate the effects of
extended light sources for image-based relighting.

2.3 Deep Optics/Sensing

Recently, a number of deep networks that optimize
not only application modules but also imaging mod-
ules in an end-to-end manner have been proposed.
This approach is called deep optics or deep sensing. A
seminal work by Chakrabarti (Chakrabarti, 2016) op-
timizes the color filter array as well as the demosaic-
ing algorithm in an end-to-end manner. Followed by
it, the idea of end-to-end optimization of the imaging
modules and the application modules is used for hy-
perspectral reconstruction (Nie et al., 2018), compres-
sive video sensing (Yoshida et al., 2018), light field
acquisition (Inagaki et al., 2018), passive single-view
depth estimation (Wu et al., 2019), single-shot high-
dynamic-range imaging (Metzler et al., 2020; Sun
et al., 2020), seeing through obstructions (Shi et al.,
2022), privacy-preserving depth estimation (Tasneem
et al., 2022), hyperspectral imaging (Li et al., 2023),
and time-of-flight imaging (Li et al., 2022).

Our study also belongs to deep optics/sensing. In
contrast to most existing methods that optimize the
properties of camera/sensor as well as the application
modules, our method optimizes the illumination con-
dition as well as the application module.

3 Proposed Method

3.1 Overview

Our proposed network consists of two modules: the
illumination module and the reconstruction module.
Figure 1 illustrates the outline of our network. The
input of the illumination module is a set of point light
sources and extended light sources with various sizes
and the images taken under those light sources. The
output of the illumination module is the optimal il-
lumination condition, i.e. the optimal linear combi-
nations of those light sources and the images under
the optimal illumination condition. The input to the
reconstruction module is the output from the illumi-
nation module and a novel point light source. The
output of the reconstruction module is the predicted
image under the novel point light source. Note that we
represent light sources by using not the positions (Xu
et al., 2018) (and sizes) but the 2D intensity maps,
because we consider the linear combinations of point
and extended light sources.

In the training phase, we train our proposed net-
work in an end-to-end manner by using the ground
truth of the images taken under novel point light
sources as shown in Figure 1 (a). Then, we obtain the
optimal illumination condition and the reconstruction
module that recovers the images under novel point
light sources from the images taken under the optimal
illumination condition.

In the test phase, we make use of the trained opti-
mal illumination condition and the trained reconstruc-
tion module as shown in Figure 1 (b). Specifically,
we actually capture the images of a scene/an object
under the optimal illumination condition, and then re-
cover the images under novel point light sources by
using the reconstruction module. The following sub-



Figure 2: The relationship between the superposition prin-
ciple and a (1× 1) convolution kernel. The pixel value of
the image taken under multiple light source (right) is repre-
sented by the sum of the products between the pixel values
of the images taken under single light sources (left) and the
intensities of the light sources (the coefficients of the linear
combination or the weights). Thus, we can consider the set
of the weights as the (1×1) convolution kernel.

sections explain the details of our network.

3.2 Illumination Module

In general, a display can represent an enormous num-
ber of light sources, because its degree of freedom is
equal to the number of the display pixels. Here, in or-
der to limit the solution space of the illumination con-
dition, we consider point light sources and extended
light sources of Gaussian distributions with (S − 1)
standard deviations whose centers are at P positions
on a display, i.e. we consider P×S light sources in to-
tal. The objective of our illumination module is to op-
timize the N set of intensities of the PS light sources.

We call a set of intensities of the PS light sources
a display pattern. According to the superposition
principle, we can represent the image captured un-
der a display pattern, i.e. a linear combination of
PS light sources as the linear combination of the im-
ages each of which is captured when turning only one
of the PS light sources on. Here, the display pat-
tern and the image captured under the display pattern
share the same coefficients of the linear combination
wm (m = 1,2,3, ...,M) where M = PS.

In order to optimize the illumination condition, we
focus on the fact that general display patterns can be
represented by (1×1) convolution kernels on the ba-
sis of the superposition principle. Specifically, since
a display pattern is a linear combination of PS light
sources, it is represented by the sum of the products
between the pixel values at each pixel of the intensity
maps of the PS light sources and the coefficients of the
linear combination wm. It is the same for the image
captured under the display pattern. Thus, the weights
of the (1 × 1) convolution kernel correspond to the
coefficients of the linear combination wm as shown in
Figure 2.

Figure 3: Our illumination module optimizes the illumina-
tion condition by representing it in two steps. (a) We com-
bine the S light sources with the same center position by
using a (1× 1) convolution kernel, and obtain N combina-
tions for each light source position. (b) We combine those
N light source combinations for each position by using N
(1× 1) convolution kernels, and obtain N combinations of
point and extended light sources.

In our implementation, we represent a general dis-
play pattern in two steps. First, for each light source
position, we combine the S light sources with the
same center position by using a (1× 1) convolution
kernel as shown in Figure 3 (a), and then normalize
the intensities so that the maximal intensity is equal
to the maximal pixel value of the display, e.g. 255 for
an 8-bit display. Second, as shown in Figure 3 (b),
we combine those P light source combinations by us-
ing a (1×1) convolution kernel and normalize it, and
then obtain a display pattern. Thus, our illumination
module consists of the two (1× 1) convolution lay-
ers. Note that when we use N images (and display
patterns) for relighting, we use (P+1)N convolution
kernels and then optimize (S+1)PN weights in total.

Finally, we add two artificial noises to the images
under the optimal illumination condition: one obeys
Gaussian distribution 2 and the other obeys uniform
distribution. The latter is for taking the quantization
of a pixel value into consideration. Therefore, the im-
age under darker light sources is more contaminated
by the quantization errors of pixel values.

2We use real images which inherently contain noises for
training, but random noises are almost canceled out by lin-
early combining the images. Therefore, we add artificial
noises to the linear combination of the real images in order
to simulate the noises in one-shot image taken under multi-
ple light sources.



Figure 4: Our reconstruction module; the input to the encoder is the optimal illumination condition and the images under
the optimal illumination condition, and the output from the decoder is the image under the novel point light source. The
information of a novel point light source is fed at the bottleneck of the U-Net.

3.3 Reconstruction Module

Note that our substantive proposals are the illumina-
tion module and the end-to-end optimization of the
illumination module and the reconstruction module.
Then, we could use an arbitrary end-to-end network
for the reconstruction module.

Our current implementation is based on the well-
known U-Net architecture (Ronneberger et al., 2015),
i.e. an encoder-decoder structure with skip connec-
tions. It is widely used not only for image-to-image
translation (Isola et al., 2017; Liu et al., 2018; Ho
et al., 2020; Rombach et al., 2022) but also for deep
optics/sensing (Nie et al., 2018; Xu et al., 2018; Wu
et al., 2019; Metzler et al., 2020; Sun et al., 2020;
Shi et al., 2022). Since deep optics/sensing often
adds a kind of illumination module ahead of a con-
ventional application module, the skip connections,
which allows information to reach deeper layers and
can mitigate the problem of vanishing gradients, are
important. Note that the number of feature maps at
each layer is optimized by using Optuna (Akiba et al.,
2019).

Figure 4 illustrates our reconstruction module.
The input to the encoder is the optimal illumination
condition and the images under the optimal illumi-
nation condition. The sizes of both the illumina-
tion condition (2D intensity maps) and the images
are 256 × 256. We repeatedly use the convolution
with the kernel size of 3× 3, the instance normaliza-
tion (Ulyanov et al., 2016), the activation function of
the ELU (Clevert et al., 2016), and the max pooling
with the size of 2×2.

The information of a novel point light source is
fed at the bottleneck of the U-Net as an intensity map

with 256× 256 pixels. We repeatedly use the convo-
lution with the kernel size of 3× 3, the instance nor-
malization, the ELU, and the max pooling with the
size of 2× 2 also for the intensity map of the novel
point light source. In addition, we apply the attention
mechanism (Xu et al., 2015) for the feature map of
the novel point light source. Then, it is merged with
the encoded feature maps of the optimal illumination
condition and the corresponding images.

The output from the decoder is the image with
256× 256 pixels under the novel point light source.
We repeatedly use the deconvolution with the kernel
size of 3×3, the instance normalization, and the ELU.
In addition, the feature maps of each layer of the en-
coder are used thorough the skip connections. We use
the convolution with the kernel size of 3× 3 and the
activation function of tanh at the last layer, and obtain
the image under the novel point light source.

3.4 Optimization

Thus, the illumination condition can be represented
as the weights of the convolution kernels, and then
we simultaneously learn them as well as the recon-
struction module via a CNN-based network in an end-
to-end manner. Our proposed network is trained by
minimizing the loss function L of the mean squared
errors between the predicted and the ground-truth im-
ages under novel point light sources.



Figure 5: Our display-camera system: (a) the configuration
of a display, a camera, and objects, (b) the display and the
camera, and (c) the objects on a shelf.

Figure 6: The extended light sources of Gaussian distribu-
tions with the standard deviations of (a) 20, (b) 40, and (c)
90 pixels, and (d) point light sources with random positions
on the display.

4 Experiments

4.1 Display-Camera System

As shown in Figure 5, we placed a set of objects on
a shelf in front of an LCD, and then captured the
images of those objects under varying illumination
conditions. We used the LCD as a programmable
light source; we realized point light sources and ex-
tended light sources with various sizes by display-
ing the intensity patterns of those light sources on the
LCD. We used an LCD of 439P9H1 from Philips and
a monochrome camera of CMLN-13S2M-CS from
Point Grey. We confirmed that the radiometric re-
sponse function of the camera is linear, but that of the
display is non-linear. The radiometric response func-
tion of the display was calibrated by using the set of
images captured by varying input pixel values of the
display.

4.2 Setup

We captured the images of 15 scenes in total; the
images of 9, 3, and 3 scenes were used for train-
ing, validation, and test respectively. In order to
efficiently train our proposed network from a rela-
tively small number of scenes, the image patches with
256 × 256 pixels were cropped from each captured
image. Therefore, the actual numbers of scenes are
considered to be 540, 180, and 108 for training, vali-
dation, and test respectively.

As shown in Figure 6, we consider the extended
light sources of Gaussian distributions with S = 3
standard deviations whose centers are at P = 6 po-
sitions on the display, i.e. we consider P × S = 18

light sources in total. We set the standard deviations
of the Gaussian distributions to 20, 40, and 90 pixels
for the display area with 950× 1800 pixels. We can
realize a point light source by turning a single pixel
on the display on, but such light source is too dark to
illuminate scenes with sufficient intensity. Then, we
consider the extended light source with the smallest
size as a point light source. In addition, we captured
30 ground-truth images per scene under point light
sources with random positions inside the P(= 6) po-
sitions on the display, and used them for the training
and validation. We captured 153 ground-truth images
per scene in a similar manner, and then used them for
the test.

We used the optimization algorithm of the
Adam (Kingma and Ba, 2016) for training. We set
the initial learning rate to a relatively large value of
1.0×10−3 so that the problem of vanishing gradients
at the input and nearby layers is mitigated, and then
gradually decreased it. We used the loss function of
the MSE, and used the MSE and SSIM for validation.
The weights of the illumination module are initialized
with the uniform distribution from 0.4 to 0.6, and the
other weights are initialized by using the He normal
initialization (He et al., 2015). The mean and standard
deviation of the Gaussian noises described in Section
3.2 are 0 and 2 for 8-bit images respectively. It took
about 27 hours for training our proposed network with
2,700 iterations.

4.3 Results

To confirm the effectiveness of our proposed method,
in particular the use of extended light sources as well
as the end-to-end optimization of the illumination
module and the reconstruction module, we compared
the following five methods:

A Linear interpolation with point light sources:
the linear interpolation of the NA = P (= 6) images
taken under the P point light sources.

B Nonlinear interpolation with point light
sources: the nonlinear interpolation of the
NB = P (= 6) images taken under the P point light
sources. The nonlinear interpolation is trained by
using our reconstruction module.

C Our method without the illumination module:
our reconstruction module is used for random and
fixed combinations of point and extended light
sources. NC images are used for reconstruction.

D Our method: the end-to-end optimization with
the illumination module. ND images are used for
reconstruction.



Figure 7: The qualitative and quantitative comparison: the predicted images under novel point light sources, the illumination
conditions, and the PSNRs and SSIMs from left to right, and the ground-truth images and the results of A through E from top
to bottom. We applied the gamma correction to those images only for display purpose.

E Reconstruction from all point and extended
light sources: our reconstruction module is
trained by using the NE = P × S (= 18) images
taken under each of the PS light sources for refer-
ence.

In summary, the numbers of captured images are as
follows: NA = NB = P = 6 by definition, NC = ND = 6
for comparison with A and B, and NE = PS = 18 3.

Figure 7 shows the qualitative and quantitative re-
sults of those methods: the reconstructed images un-
der novel point light sources, the illumination condi-
tions, and the PSNRs and SSIMs from left to right,
and the ground-truth images and the results of A
through E from top to bottom. The higher PSNR and
SSIM are, the better.
A vs. B:
We can compare the performances of the linear in-
terpolation and the nonlinear interpolation with point

3Note that our proposed method is related to light trans-
port acquisition such as multiplexed illumination (Schech-
ner et al., 2003) and compressive sensing (Peers et al.,
2009), but the number of required images are far smaller
than them.

light sources. We can see qualitatively and quanti-
tatively that the nonlinear interpolation works better
than the linear interpolation. In particular, the specu-
lar highlight reconstructed by the linear interpolation
is just a linear combination of the original specular
highlights with the same positions, and then multi-
ple highlights are observed in the reconstructed image
although a single highlight is observed in the corre-
sponding area of the ground-truth image.
(A, B) vs. (C, D):
We can compare the performances with/without ex-
tended light sources. We can see that the methods us-
ing extended light sources (C, D) perform better than
the methods using only point light sources (A, B) in
terms of PSNR and SSIM.
C vs. D:
We can compare the performances with/without our
illumination module. We can see that the methods
using the illumination module (D) outperform the
method without the illumination module (C) in terms
of PSNR and SSIM.

Therefore, we can conclude that the use of ex-
tended light sources is effective from the comparison



between (A, B) and (C, D) and that the end-to-end
optimization, in particular our illumination module is
effective from the comparison between C and D. In
addition, we can say that our reconstruction module
works well from the comparison between A and B.
Note that E works best simply because the number
of images is 3 times larger than the other methods,
but our method with 6 images works well similarly.
It is interesting that the optimal illumination condi-
tions themselves show the effectiveness of extended
light sources. Specifically, our proposed method uses
the combinations of various point and extended light
sources.

5 Conclusion and Future Work

We achieved relighting from a small number of im-
ages by using not only point light sources but also ex-
tended light sources for efficiently capturing specular
reflection components. Specifically, we proposed a
CNN-based method that simultaneously learns the il-
lumination module and the reconstruction module in
an end-to-end manner. We conducted a number of ex-
periments using real images captured with a display-
camera system, and confirmed the effectiveness of our
proposed method. The extension of our method for
other high-frequency components of images such as
cast shadows and caustics is one of the future direc-
tions of our study.
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